Abstract

The use of automated, unmanned aerial vehicles (drones) to deliver commercial packages is poised to become a new industry, significantly shifting energy use in the freight sector. Here we find the current practical range of multi-copters to be about 4 km with current battery technology, requiring a new network of urban warehouses or waystations as support. We show that, although drones consume less energy per package-km than delivery trucks, the additional warehouse energy required and the longer distances traveled by drones per package greatly increase the life-cycle impacts. Still, in most cases examined, the impacts of package delivery by small drone are lower than ground-based delivery. Results suggest that, if carefully deployed, drone-based delivery could reduce greenhouse gas emissions and energy use in the freight sector. To realize the environmental benefits of drone delivery, regulators and firms should focus on minimizing extra warehousing and limiting the size of drones.

Highlights

  • The use of automated, unmanned aerial vehicles to deliver commercial packages is poised to become a new industry, significantly shifting energy use in the freight sector

  • Truck transport is responsible for 24% of transportation-related greenhouse gas emissions and comprises 23% of transportation energy use in the USA13, changes to the industry are important to the environment and the energy system[14]

  • We characterize the life-cycle greenhouse gas (GHG) emissions and energy impacts of commercial package delivery by drone compared with current systems

Read more

Summary

Introduction

The use of automated, unmanned aerial vehicles (drones) to deliver commercial packages is poised to become a new industry, significantly shifting energy use in the freight sector. We characterize the life-cycle greenhouse gas (GHG) emissions and energy impacts of commercial package delivery by drone compared with current systems. We show that while drones could consume less energy per package than diesel-powered delivery trucks, the additional warehouse energy required greatly increases life-cycle GHG impacts.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.