Abstract
The implications of the findings of recent GPS and micro-seismic studies in the Taupo Volcanic Zone (TVZ), New Zealand, on models of processes transporting mass, heat and chemicals are discussed. It is argued that in addition to the well established process of groundwater convection extracting heat and chemicals by interacting with magmatic intrusives under the TVZ, that two other processes may be important. Firstly, the existence of a ductile layer with very low permeability between about 8 to 15 km depth will produce a region of `enhanced conduction' in which very high conductive fluxes of energy arise from a temperature distribution which varies exponentially with depth. Secondly, water may transport up through the ductile layer, as a result of extensional processes in the ductile region. If extension is occurring at about 8 mm/yr, then geothermal heat transfer in the TVZ of about 4200 MW is made up from about 1200 MW from the cooling of intrusives in the brittle region in the upper 8 km; of about an additional 1900 MW of conducted heat entering the brittle region from the ductile region; and about an additional 1100 MW from water transport through the ductile region. Provided this water flow has a chloride concentration similar to that emitted from nearby volcanoes, then the total chloride transport from the TVZ is about 3.5 kg/s, as suggested by average enthalpy to chloride ratios in the TVZ of about 1.2 MJ/g. The present high heat and mass transport processes in the TVZ are assumed to result from the passive filling of volume created from extensional processes under the TVZ, plus conductive and/or convective heating processes below 15 km depth.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have