Abstract

The objective of this study was the investigation of energy transfer between the laser dyes rhodamine 3B (R3B) and oxazine 4 (Ox4) adsorbed on the surface of synthetic Sumecton saponite (Sum). The process of energy transfer was studied for both saponite dispersions and oriented solid films. The electronic properties, luminescence, and the energy transfer process were described by UV–vis absorption and fluorescence spectroscopy. For the efficiency of the energy transfer process, the concentrations of energy donor and acceptor components on a clay mineral surface were found to be essential. A side reaction of the molecular assembly formation reduced both the luminescence and energy-transfer yields, mainly due to fluorescence quenching. The quenching was more problematic for the solid film specimens, where an appropriate modification of the inorganic host with hydrophobic alkylammonium cations was used to achieve a higher luminescence. Due to the higher tendency of Ox4 to form nonluminescent aggregates at higher concentrations, the lowering of the Ox4 concentration further improved the luminescent properties of the films. In this case, the energy transfer occurring in the solid film from R3B to Ox4 was clearly proven.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.