Abstract

Solution polymer blends of a high molecular weight and a low molecular weight poly(9-vinyl carbazole) PVK with poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), at a fixed blend ratio of 95.5:0.5, were processed via electrospraying and electrospinning. SEM studies revealed that electrosprayed particles were produced when low molecular weight PVK was used, while electrospun fibers were successfully obtained from solutions containing high molecular weight PVK, over a concentration range of 4–10%(w/v). From the absorption spectra of the neat polymers it was determined that Urbach energy Eu increase and optical band gap Eg decreases due to the physical defects along the main chain introduced by these electrostatic processing methods. Photoluminescence spectroscopy revealed a particular applied voltage, which depends on concentration and molecular weight, where aggregation of PVK levels off. Luminescence quenching of MEH-PPV is also observed to increase with applied voltage consistent with possible energy transfer from shorter conjugation length segments to nearby longer conjugated segments. The ratio of the intensity of the excitation spectra of the PVK (donor, both PVKL or PVKH) and the MEH-PPV (acceptor), ID/IA, exhibited minima at this particular voltage and then levels off, indicating not only maximum interpenetration and thus compatibility of both polymers but also maximum energy transfer. Hence, we demonstrate that compatibility and energy transfer can be optimized varying concentration and applied voltage during both electrospraying and electrospinning processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.