Abstract

Large-scale solar is a non-reversible trend in the energy mix of Malaysia. Due to the mismatch between the peak of solar energy generation and the peak demand, energy storage projects are essential and crucial to optimize the use of this renewable resource. Although the technical and environmental benefits of such transition have been examined, the profitability of energy storage systems combined with large-scale solar PV has not been studied in Malaysia. This project aims to determine the most profitable business model of power systems, in terms of PV installed capacity, and energy storage capacity, and power system components. A comparative study has been done to compare the economic outcomes from different types of projects, with different scales and multiple configurations of large-scale solar PV combined with energy storage. The lowest values of LCOE are guaranteed with energy storage output to LSS output ratio, A = 5%. In this case, 30-MW projects have the cheapest electricity, equal to RM 0.2484/kWh. On the other hand, increasing the energy storage output to LSS output ratio, A to 60% results in the increase of LCOE, exceeding RM 0.47/kWh. On the economical side, with a difference of 0.06 kWh/m2/day for the analysis carried out in Pahang and Perak, the difference in net present worth is more than 7.5% of the net present cost. The difference between the two locations is comparatively higher for 50-MW projects. It is equal to RM 11.67 Million for A = 60%, while it is equal to RM 13.5 Million with A = 5%. Due to the energy prices in Malaysia, the projects that include large-scale solar only are more profitable technically and financially than those including large-scale solar and energy storage. It is found that adding storage to a large-scale solar project is more profitable technically and financially with greater large-scale solar capacities and smaller storage capacities. Nevertheless, with the current energy prices in Malaysia, projects that include only energy storage are not financially profitable. This study determined the parameters that affect the profitability of large-scale solar energy projects and energy storage projects, and the configurations that maximize financial profits. The findings of this study are useful for the future regulations that intend to enhance the deployment of large-scale solar PV and energy storage in Malaysia.

Highlights

  • It has been the global goal for reduction of greenhouse gas emissions and steps to invest in renewable energy (RE) generation systems have been taken in many countries around the world

  • It is clear after the simulations and the calculations done on different Large-scale solar (LSS) capacities in Pahang and Perak, that storage as investment is not financially profitable

  • The lowest values of levelized cost of electricity (LCOE) are guaranteed with energy storage output to LSS output ratio, A = 5%

Read more

Summary

Introduction

It has been the global goal for reduction of greenhouse gas emissions and steps to invest in renewable energy (RE) generation systems have been taken in many countries around the world. This study aims to compare different types of power systems that include large-scale solar and energy storage capacities, in order to determine the most profitable models. Being the early plant to generate power for utility provision, the plant faces problems especially when compared to other types of renewable energy sources. One main problem for large-scale PV power storage and harvester is the uncontrollable amount of power generation and demand [shah2015]. It was from this root of problem that has led to many other researchers conduct plant feasibility and evaluations before considering establishment and integration of large-scale PV power plants

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.