Abstract

The use of renewable energy for power generation is increasing rapidly. However, residual electricity supplied in excess of demand is a global concern. To effectively utilize excess power, storing surplus renewable energy in energy storage systems (ESSs) is important. In this study, a seawater battery (SWB) is proposed as an ESS for intermittent power resources, and its energy storage capability is evaluated. Four charging scenarios that imitate different forms of renewable energy (constant current, solar, tidal, and wind) reveal that SWB is an efficient ESS for intermittent renewable energy sources. Scenario-dependent energy efficiency follows the order: ideal constant current (83.6%) > solar power (80.4%) > tidal power (79.6%) > wind power (79.4%). The ability of two artificial intelligence models is also tested to estimate the potential of SWBs. A novel long short-term memory model outperforms an artificial neural network model, predicting the potential of SWB with a high precision (R2 > 0.99) and an extremely low error rate (<0.18%). Therefore, the conceptualization and modeling of an SWB as an ESS may pave the way for energy storage from and management of intermittent energy sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.