Abstract

Energy storage (ES) is a form of media that store some form of energy to be used at a later time. In traditional power system, ES play a relatively minor role, but as the intermittent renewable energy (RE) resources or distributed generators and advanced technologies integrate into the power grid, storage becomes the key enabler of low-carbon, smart power systems for the future. Most RE sources cannot provide steady energy supply and introduce a potential unbalance in energy supply and load demand. ES can buffer sizable portion of energy generated by different intermittent RE sources during low demand time and export it back into the network as required. ES can be utilized in load shifting, energy management and network voltage regulations. It can play a large role in supplementing peaking generation to meet short-period peak load demand. ES technologies are classified considering energy and power density, response time, cost, lifetime and efficiency. Different application requires different types of ES system (ESS). IEEE 1547 and AS 4777 provide guideline to connect RE and storage into the distribution network. Based on the standards, utility operators plan in gradual integration of RE into the grid. Storage can play significant role in reduction in greenhouse gas (GHG) emission by maximizing RE utilization. As the utility operator needs to support costly peak load demand which could be supported by storage and as a consequence, storage can help in energy cost reduction. Although, the present cost of storage considered a barrier for extensive use, however, research is going on for low-cost, high-performance storage system. Therefore, in the low-carbon future power system, ES will play a significant role in increasing grid reliability and enabling smart grid capabilities for sustainable future by balancing RE output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.