Abstract

Using high-resolution direct numerical simulation and arguments based on the kinetic energy flux Π(u), we demonstrate that, for stably stratified flows, the kinetic energy spectrum E(u)(k)∼k(-11/5), the potential energy spectrum E(θ)(k)∼k(-7/5), and Π(u)(k)∼k(-4/5) are consistent with the Bolgiano-Obukhov scaling. This scaling arises due to the conversion of kinetic energy to the potential energy by buoyancy. For weaker buoyancy, this conversion is weak, hence E(u)(k) follows Kolmogorov's spectrum with a constant energy flux. For Rayleigh-Bénard convection, we show that the energy supply rate by buoyancy is positive, which leads to an increasing Π(u)(k) with k, thus ruling out Bolgiano-Obukhov scaling for the convective turbulence. Our numerical results show that convective turbulence for unit Prandt number exhibits a constant Π(u)(k) and E(u)(k)∼k(-5/3) for a narrow band of wave numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call