Abstract
An energy analysis, in conventional and organic vineyards, combined with ethanol production and greenhouse gas emissions, is useful in evaluating present situation and deciding best management strategies. The objective of this study was to evaluate the differences in the energy flow between organic and conventional vineyards in three locations, to calculate CO2, CH4 and N2O-emissions based on the used fossil energy and to explore if wine industry wastes can be used to extract bioethanol. The data were collected through personal interviews with farmers during 2004–2005. Eighteen farmers, who owned vineyards about 1 ha each, were randomly selected to participate in this study [(3 conventional and 3 organic) × 3 locations]. The means averaged over all locations for fertilizer application, plant protection products application, transportation, harvesting, labor, machinery, fuels, plant protections products and tools energy inputs, total energy inputs, outputs (grapes), outputs (grapes + shoots), grape yield, man hour, pomace and ethanol from pomace were significantly higher in conventional than in organic vineyards, while the opposite occurred for the pruning. Means averaged over two farming systems for harvesting, tools energy inputs, energy outputs (grapes), grape yield, pomace and ethanol from pomace were significantly higher at location A, followed by location C and location B. Finally, for irrigation, the means averaged over the two farming systems were significantly lower at location C. Greenhouse gas emissions were significant lower in organic than in conventional vineyards. The results show a clear response of energy inputs to energy outputs that resulted from the farming system and location.
Full Text
Topics from this Paper
Conventional Vineyards
Energy Outputs
Organic Vineyards
Grape Yield
Greenhouse Gas Emissions
+ Show 5 more
Create a personalized feed of these topics
Get StartedTalk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Ecological Indicators
Apr 1, 2013
Ecological Engineering
Mar 1, 2016
Biomass and Bioenergy
Mar 1, 2011
Erwerbs-Obstbau
Apr 13, 2018
Renewable and Sustainable Energy Reviews
Apr 1, 2021
Environmental Science & Technology
Aug 23, 2008
Communications in Soil Science and Plant Analysis
Mar 25, 2020
Sep 23, 2015
Journal of Cleaner Production
Jun 1, 2018
Journal of Cleaner Production
Oct 1, 2016
Iran Agricultural Research
Nov 1, 2020
Journal of Renewable and Sustainable Energy
Mar 1, 2013
Energy
Sep 1, 2013
Agricultural Systems
Jan 1, 2014
Biomass and Bioenergy
Biomass and Bioenergy
Dec 1, 2023
Biomass and Bioenergy
Dec 1, 2023
Biomass and Bioenergy
Dec 1, 2023
Biomass and Bioenergy
Dec 1, 2023
Biomass and Bioenergy
Dec 1, 2023
Biomass and Bioenergy
Nov 1, 2023
Biomass and Bioenergy
Nov 1, 2023
Biomass and Bioenergy
Nov 1, 2023
Biomass and Bioenergy
Nov 1, 2023
Biomass and Bioenergy
Nov 1, 2023