Abstract

In this study, a continuously anaerobic two-stage pilot plant was established for bioenergy production, comprising 5 major pieces of equipment: a mixing tank, 1st anaerobic digester (AD), 2nd AD, sediment tank, aeration tank, and final sediment tank, all operating at ambient conditions. The operation of the continuously anaerobic two-stage pilot plant was automatically controlled by a programmable logic controller (PLC) using a designed control logic concept to set the hydraulic retention time (HRT) and inlet substrate concentration. The organic loading rate, pretreatment of hydrolysis pressure, and microbial community analysis were investigated for their effects on biogas production performance using different substrates: soybean residue (SR) and food waste hydrolysate (FWH), respectively. It was found that the peaks of biogas production rate on daily volumetric feeding were 1.20 m³·m⁻³·d⁻1, and the biogas yield on VS added was 760 dm³·kg⁻1 from food waste hydrolysate with a pretreatment hydrolysis pressure of 10 kg·cm⁻2, at an OLR in COD concentration of 3.56 kg·m⁻³·d⁻1, and an HRT of 11 days, respectively. The Methanobrevibacter genus was found to be abundant in the 1st AD, approximately 6.7 times more abundant than in the 2nd AD. The continuous anaerobic two-stage pilot plant was properly examined for its application in treating food waste and soybean residue with the goal of obtaining renewable bioenergy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call