Abstract
SummaryEnergy requirements for fullerene and nanotube synthesis are calculated from literature data and presented for a number of important production processes, including fluidized bed and floating catalyst chemical vapor deposition (CVD), carbon monoxide disproportionation, pyrolysis, laser ablation, and electric arc and solar furnace synthesis. To produce data for strategic forward‐looking assessments of the environmental implications of carbon nanoparticles, an attempt is made to balance generality with sufficient detail for individual processes, a trade‐off that will likely be inherent in the analysis of many nanotechnologies. Critical energy and production issues are identified, and potential improvements in industrial‐scale processes are discussed. Possible interactions with industrial ecosystems are discussed with a view toward integrating synthesis to mitigate the impacts of large‐scale carbon nanoparticle manufacture. Carbon nanoparticles are found to be highly energy‐intensive materials, on the order of 2 to 100 times more energy‐intensive than aluminum, even with idealized production models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.