7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.jngse.2016.12.036
Copy DOIPublication Date: Dec 29, 2016 | |
Citations: 33 | License type: cc-by-nc-sa |
Currently, different technologies are being employed to remove CO2 and H2S from the natural gas. Based on chemical phenomenon, the absorption using alkanolamines is probably the most extended process for the acid gas removal. However, membrane technologies are considered as an alternative in specific cases for their better performances, cleanness, energy requirements, operative costs and location flexibility.The aim of this article is to estimate, compare and analyze the energy requirements, greenhouse gases (GHG) emissions and investment costs of three Natural Gas Sweetening processes. For the study, a regular process using methyldiethanolamine (MDEA), the absorption process using recompressed vapor and a membrane system were simulated using Aspen Hysys v8.8. For the first case, real data from the gas plant Aguaragüe (Argentina) was used to validate the model. To establish a proper comparison, a natural gas with 4 mol.% of CO2 is considered as the inlet stream of each configuration. Specifically, compression and pump power, specific total heat, removed CO2, CH4 wastes and capital costs were estimated and compared for each case. Additionally, a discussion including different aspects in regard to the energy efficiency of the processes was conducted.Although the proposed membrane system demonstrated to reduce the energy requirements (77% and 72%) and emissions (80% and 76%) in respect to both absorption processes, the CH4 losses were higher by more than 6 factor. Moreover, the investment cost of the technology is 12% higher than the required capital of a conventional amine process.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.