Abstract
The effects of the rising electron temperature due to the energy relaxation on the quantization of the inversion layer in a nano-metal–oxide–semiconductor field transistor (MOSFET) with p-type silicon substrate have been theoretically investigated via self-consistent solution to the coupled Schrodinger equation with considering quantum coupling effects and Poisson equation. The first quantized energy level in the inversion layer rises from 3.6 to 211.4 %, and the total number of the inversion channel electron decreases from 95.7 to 6.5 % relative to those neglecting energy relaxation of channel electrons when the channel electric field increases from 10 to 55 kV/cm. The output characteristic of MOSFET will be largely affected by the energy relaxation when the channel electric field is higher than 10 kV/cm. All these suggest that the energy relaxation of channel electrons should be considered in the modeling of MOSFETs for higher channel electric field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.