Abstract

We show that if space is compact, then trajectories cannot be defined in the framework of quantum Hamilton--Jacobi equation. The starting point is the simple observation that when the energy is quantized it is not possible to make variations with respect to the energy, and the time parameterisation t-t_0=\partial_E S_0, implied by Jacobi's theorem and that leads to group velocity, is ill defined. It should be stressed that this follows directly form the quantum HJ equation without any axiomatic assumption concerning the standard formulation of quantum mechanics. This provides a stringent connection between the quantum HJ equation and the Copenhagen interpretation. Together with tunneling and the energy quantization theorem for confining potentials, formulated in the framework of quantum HJ equation, it leads to the main features of the axioms of quantum mechanics from a unique geometrical principle. Similarly to the case of the classical HJ equation, this fixes its quantum analog by requiring that there exist point transformations, rather than canonical ones, leading to the trivial hamiltonian. This is equivalent to a basic cocycle condition on the states. Such a cocycle condition can be implemented on compact spaces, so that continuous energy spectra are allowed only as a limiting case. Remarkably, a compact space would also imply that the Dirac and von Neumann formulations of quantum mechanics essentially coincide. We suggest that there is a definition of time parameterisation leading to trajectories in the context of the quantum HJ equation having the probabilistic interpretation of the Copenhagen School.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.