Abstract

This paper presents a comprehensive design space exploration for boosting energy efficiency of a fast Fourier transform (FFT) VLSI accelerator, exploiting several approximate multipliers (AxM) combined with approximate adder (AxA) circuits. The FFT hardware herein presented consists of a fixed-point sequential architecture using a radix-2 butterfly with decimation in time. We explore a set of AxMs – namely Dynamic Range Unbiased (DRUM), Rounding-based Approximate (RoBA), leading one Bit-based Approximate (LoBA), and Truncated approach – jointly with the LOA, ETA-I, CopyA, CopyB, Trunc0, Trunc1 approximate adders. The approximate arithmetic operators are used in the butterfly kernel with exploration of the approximation levels (for the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${L}$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${K}$ </tex-math></inline-formula> least-significant bits, respectively, for the AxM and AxA), aiming at discovering the most energy-efficient configuration under a design-time QoR constraint. The mean square error and peak signal-to-noise ratio metrics define which approximate levels combining <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${L}$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${K}$ </tex-math></inline-formula> variations will enable the FFT to process signals to generate spectrograms without significant losses. Our results show that the LoBA multiplier with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula> =8 together with the LOA, Trunc1 and Trunc0, at different approximation levels, provide most energy savings with controllable quality degradation, presenting a minimum decrease of 20.2% in power dissipation without degrading the spectrogram generation quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.