Abstract

The identity and the energy distributions of positive and negative ions electrostatically extracted from the liquid phase in an ionic liquid ion source (ILIS) are analysed with a time-of-flight mass spectrometer and a multi-grid retarding potential analyzer. Accurate energy measurements using ionic liquids in an externally wetted configuration are reported for the first time. Droplet-free beams are produced using the ionic liquid 1-ethyl-3-methylimidazolium bis(triflouromethylsulfonyl)amide (EMI-Im) in which the solvated ions (EMI-Im)nEMI+ and (EMI-Im)nIm− with n = 0,1,2 are observed. The small ion source size and the energy distribution widths and deficits of a few electronvolts are quite similar to those of liquid metal ion sources, confirming that ILIS can be used in applications requiring highly focusable beams, e.g. sub-micron ion lithography. Measurements also suggest that solvated ions with n ⩾ 1 exhibit post-extraction fragmentation into lighter species at a rate increasing with their original degree of solvation. About 10% of the total beam current is carried away by metastable species that break up almost immediately after extraction while inside the emitter accelerating region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.