Abstract

Microgrids are an essential element of smart grids, which contain distributed renewable energy sources (RESs), energy storage devices, and load control strategies. Models built based on machine learning (ML) and deep learning (DL) offer hope for anticipating consumer demands and energy production from RESs. This study suggests an innovative approach for energy analysis based on the feature extraction and classification of microgrid photovoltaic cell data using deep learning algorithms. The energy optimization of a microgrid was carried out using a photovoltaic energy system with distributed power generation. The data analysis has been carried out for feature analysis and classification using a Gaussian radial Boltzmann with Markov encoder model. Based on microgrid energy optimization and data analysis, an experimental analysis of power analysis, energy efficiency, quality of service (QoS), accuracy, precision, and recall has been conducted. The proposed technique attained power analysis of 88%, energy efficiency of 95%, QoS of 77%, accuracy of 93%, precision of 85%, and recall of 77%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call