Abstract

An experimental investigation is reported of the energy partition to the workpiece for grinding of steels with aluminum oxide and cubic boron nitride (CBN) abrasive wheels. The energy input to the workpiece was obtained by measuring the temperature distribution in the workpiece using an embedded thermocouple technique and matching the results with analytically computed values. It was found that 60-75 percent of the grinding energy is transported to the workpiece as heat with an aluminum oxide abrasive wheel, as compared to only about 20 percent with CBN wheels. An analysis of the results indicates that the much lower energy partition to the workpiece with CBN can be attributed to its very high thermal conductivity whereby a significant portion of the grinding heat is transported to the abrasive instead of to the workpiece. The much lower energy partition to the workpiece with CBN wheels results in much lower grinding temperatures and a greatly reduced tendency for thermal damage to the workpiece.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call