Abstract

The study of the evolution of the conduction band in dense gases and supercritical fluids near the critical point has been complicated by a lack of precise experimental measurements. Both photoemission from an electrode immersed in the fluid and field ionization of a molecule doped into the fluid have been used to probe solvent density effects on the energy of an excess electron as a function of fluid number density and temperature. In this perspective, we present recent experimental results that show a strong critical point effect on the minimum conduction band energy near the critical density and temperature of a fluid. We also discuss the recent development of a new theoretical model that advances our understanding of the density and temperature dependence of the conduction band minimum in near critical point fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.