Abstract

In the weak-field approximation of the covariant theory of gravitation the 4/3 problem is formulated for internal and external gravitational fields of a body in the form of a uniform ball. The dependence of the energy and the mass of the moving body on the energy of the field accompanying the body, as well as the dependence on the characteristic size of the body are described. Additions in the energy and the momentum of the system, defined by the energy and momentum of the gravitational and electromagnetic fields, associated with the body, are explicitly calculated. The conclusion is made that the energy and the mass of the system can be described through the energy of ordinary and strong gravitation and through the energies of electromagnetic fields of particles that compose the body.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.