Abstract

An energy method based on beam theory is proposed to determine the strain energy release rate of an existing crack in composite laminates. The developed analytical method was implemented in isotropic materials, and the obtained strain energy release rate of a crack was validated by reference results and finite element solutions. The general behavior of crack growth on the left or right crack tip was evaluated, and basic trends leading to crack propagation to one side of the crack were established. A correction factor was introduced to improve the accuracy of the strain energy release rate for small cracks. The singularity at the crack tip caused by dissimilar materials was investigated and was found that the inclusion of the singularity effect could increase the accuracy for small cracks. The calculated strain energy release rate of a crack in a composite beam has been verified by comparing with a finite element model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call