Abstract
To obtain measurements of energy balance in lactating beef cows, respiration calorimetry and digestion trials were conducted using seven lactating (613 kg BW) and three nonlactating (598 kg BW) Hereford x Angus heifers fed a pelleted 75% alfalfa:25% concentrate diet. Five measurements of energy balance were obtained at 6- to 7-wk intervals beginning 6 to 10 wk postpartum in lactating heifers and at 6-wk intervals in nonlactating heifers. Milk yield was measured using a combination of weigh-suckle-weigh and machine milking to adapt heifers to milking by machine without the use of oxytocin. Heifers were milked only by machine during measurements of energy balance. Weekly milk yield averages ranged from 8.2 kg/d at wk 5 postpartum to 3.2 kg/d at wk 32 postpartum. When scaled to BW(.75), the regression of NE1 on ME intake and the regression of ME intake on NE1 were remarkably similar to previously published regressions for measurements obtained from lactating Holstein-Friesian cows. The average daily maintenance energy requirement from these regressions was 503 kJ ME/kg BW(.75), a value similar to the average value reported previously for lactating Holstein-Friesian cows (488 kJ/kg (BW.75)). This is in contrast to numerous published comparisons of the maintenance requirements of cattle breed types in the nonlactating state and current NRC standards for estimating maintenance energy requirements of beef and dairy cattle. The results of the present study suggest that when expressed on the basis of BW(.75) the efficiency of utilization of incremental ME above maintenance for milk and tissue energy (i.e., NE1) is similar among lactating Hereford x Angus heifers and lactating Holstein-Friesian cows. The breeds differ in terms of their propensity for milk yield and the resulting partition of ME between milk synthesis and tissue energy retention.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have