Abstract
This study presents a Two-Layer Deep Deterministic Policy Gradient (TL-DDPG) energy management strategy for Hydrogen fuel cell hybrid train, that aims to solve the problem that traditional reinforcement learning strategies require high initial values and are difficult to optimize global variables. Augmenting the optimization capabilities of the inner layer, a frequency decoupling algorithm integrates into the outer layer, furnishing a fitting initial value for strategy optimization. This addition aims to bolster the stability of fuel cell output, thereby enhancing the overall efficiency of the hybrid power system. In comparison with the traditional reinforcement learning algorithm, the proposed approach demonstrates notable improvements: a reduction in hydrogen consumption per 100 km by 16.3 kg, a 9.7% increase in the output power stability of the fuel cell, and a 1.8% enhancement in its efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.