Abstract

Due to their dependence on a task-specific reward function, reinforcement learning agents are ineffective at responding to a dynamic goal or environment. This paper seeks to overcome this limitation of traditional reinforcement learning through a task-agnostic, self-organising autonomous agent framework. The proposed algorithm is a hybrid of TMGWR for self-adaptive learning of sensorimotor maps and value iteration for goal-directed planning. TMGWR has been previously demonstrated to overcome the problems associated with competing sensorimotor techniques such SOM, GNG, and GWR; these problems include: difficulty in setting a suitable number of neurons for a task, inflexibility, the inability to cope with non-markovian environments, challenges with noise, and inappropriate representation of sensory observations and actions together. However, the binary sensorimotor-link implementation in the original TMGWR enables catastrophic forgetting when the agent experiences changes in the task and it is therefore not suitable for self-adaptive learning. A new sensorimotor-link update rule is presented in this paper to enable the adaptation of the sensorimotor map to new experiences. This paper has demonstrated that the TMGWR-based algorithm has better sample efficiency than model-free reinforcement learning and better self-adaptivity than both the model-free and the traditional model-based reinforcement learning algorithms. Moreover, the algorithm has been demonstrated to give the lowest overall computational cost when compared to traditional reinforcement learning algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call