Abstract

Electricity generation using renewable energy-based microgrid (REM) is a prerequisite to achieve one of the cardinal objectives of sustainable development goals. Nonetheless, the optimum design and sizing of the REM is challenging. This is because the REM needs to supply the fluctuating demand considering the sporadic behaviour of the renewable energy sources (RES). This paper, therefore, proposes a nature-inspired metaheuristic optimization searching technique (MOST) to optimize the components of an autonomous microgrid integrating a diesel generator <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">${\left(D_{\text{GEN}}\right)}$</tex> , battery bank, photovoltaic and wind turbine. In this regard, a cycle-charging energy management scheme (CEMS) control is proposed and implemented using a rule-based algorithm. The proposed CEMS provide a power delivery sequence for the different components of the microgrid. Subsequently, the CEMS is optimized using the metaheuristic optimization searching techniques (MOSTs). To benchmark, the paper compares the success of six different MOSTs. The simulation is performed for the climatic conditions of Yobe State, in northern Nigeria using MATLAB software. The comparative results show that the grasshopper optimization algorithm is found to yield a better result because it gives the least fitness function relative to other studied MOSTs. Remarkably, it outperforms the grey wolf optimizer, the ant lion optimizer, and the particle swarm optimization by ~ 3.0 percent, ~ 5.8 percent, and ~ 3.6 percent (equivalent to a cost savings of $8332.38, $4219.87, and $5144.64 from the target microgrid project). Results also indicate that the proposed CEMS adopted for the microgrid control strategy has led to the implementation of a clean and affordable energy system, as it's significantly minimized CO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> (by 92.3%), fuel consumption (by 92.4%), compared fossil fuel-based <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">${D_{\text{GEN}}}$</tex> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.