Abstract

The rapid advancement in technology and rise in energy consumption have motivated research addressing Demand-Side Management (DSM). In this research, a novel design for Home Energy Management (HEM) is proposed that seamlessly integrates Battery Energy Storage Systems (BESSs), Photovoltaic (PV) installations, and Electric Vehicles (EVs). Leveraging a Mixed-Integer Linear Programming (MILP) approach, the proposed system aims to minimize electricity costs. The optimization model takes into account Real-Time Pricing (RTP) tariffs, facilitating the efficient scheduling of household appliances and optimizing patterns for BESS charging and discharging, as well as EV charging and discharging. Both individual and multiple Smart Home (SH) case studies showcase noteworthy reductions in electricity costs. In the case of multiple SHs, a remarkable cost reduction of 46.38% was achieved compared to a traditional SH scenario lacking integration of a PV, BESS, and EV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.