Abstract

It has been recognized for sometime that electron energy loss spectroscopy (EELS) is potentially the most sensitive method of measuring elemental composition in the electron microscope. Magnetic sector spectrometers currently in use collect most of the inelastically scattered electrons, while the cross sections for ionization of the L2 3 levels of the biologically important elements are large. The energies of the theoretically predicted L2 3 absorption edge maxima and their corresponding differential cross section for lOmrad collection and 80keV incident electrons are shown in Table I. The characteristic energy loss electron count rate expected from one atom with lOeV spectrometer slit width and lOOA/cm2 (the maximum available from a tungsten hairpin) electron flux at the specimen, indicates that the minimum detectable mass sensitivity of EELS will be high. An experimentally determined count rate and cross section for the Fe M2, 3 edge was determined from the ferritin images shown in Fig. 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.