Abstract

Today, transthoracic and intracardiac defibrillation offer a well-accepted and widely used form of therapy for patients with life-threatening ventricular arrhythmias. Despite the wide clinical use of defibrillators, the mechanisms by which an electrical shock halts fibrillation are still not completely understood. During a shock, different amounts of current flow through the different parts of the heart and the current distribution is highly uneven. This current distribution is affected by changes in the shock potential gradient through the heart, changes in fiber orientation, and changes in myocardial conductivity caused by connective tissue barriers. It would be ideal if the potential gradient distribution throughout the ventricles could be measured directly for each individual patient during defibrillator implantation and follow-up and the shock strength could be programmed based on this measurement, but so far this is not possible. A more feasible approach is to determine, by trial and error, the magnitude of the shock strength delivered through the defibrillation electrodes for successful defibrillation. There is no distinct threshold value above which all shocks succeed and below which all shocks fail to defibrillate. Rather, increasing shock strength increases the likelihood the shock will succeed. Therefore, instead of a distinct defibrillation threshold, a probability of success curve exists. However, increasing the shock strength above an optimal range can actually decrease the success rate for defibrillation. One possible explanation is that the high voltage gradients caused by such large shocks damage cells and result in postshock arrhythmias that may reinitiate fibrillation. Another problem that can affect the probability of defibrillation success for a particular programmed energy setting is that the shock strength required for defibrillation may increase over time due to (1) the growth of fibrotic tissue around the defibrillation electrode; (2) migration of the lead; (3) acute ischemia; or (4) other changes in the underlying cardiac disease (e.g., worsening of heart failure). Such possible increases in the defibrillation shock strength requirement should be compensated for before they occur by adding a margin of safety to the shock strength needed for effective defibrillation. When programming an implantable defibrillator, it is important to keep in mind that the defibrillation shock should be (1) strong enough to defibrillate at least 98% of the time with the first shock; (2) weak enough not to cause severe postshock arrhythmias or reinitiation of fibrillation; but (3) strong enough to compensate for changes of defibrillation energy requirements over time. This usually can be accomplished by setting the defibrillator 7–10 J higher than the defibrillation threshold determined by a standard step-down protocol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.