Abstract

Identifying new nitrogenated hydrocarbon molecules in the interstellar medium (ISM) is challenging because of the lack of comprehensive spectroscopic data from experiments. In this computational work, we focus on investigating the structures, relative energies, spectroscopic constants, and energy landscape of the cyclic isomers of diazirine (c-CH2N2) using ab initio quantum chemical methods. Density functional theory (DFT) methods and coupled cluster theory with singles and doubles including perturbative triples [CCSD(T)] and CCSD(T) with the explicitly correlated F12b correction [CCSD(T)-F12b] were employed for this purpose along with large correlation consistent cc-pVTZ, cc-pVQZ, and cc-pV5Z basis sets. Harmonic vibrational frequencies, infrared vibrational intensities, rotational constants, and dipole moments are reported. Anharmonic vibrational fundamentals along with centrifugal distortion constants, and vibration-rotation interaction constants are also reported for all the cyclic isomers. The energies computed with the CCSD(T) and CCSD(T)-F12b methods were extrapolated to the one-particle complete basis set (CBS) limit following a three-point formula. At the CCSD(T)-F12b/CBS level of theory, the 3,3H-diazirine (c-CH2N2) is the lowest energy cyclic isomer followed by 1,3H-diazirine, (E)-1,2H-diazirine, and (Z)-1,2H-diazirine, which are 20.1, 47.8, and 51.3 kcal mol-1 above the 3,3H-diazirine, respectively. Accurate structures and spectroscopic constants that are reported here could be useful for future identification of these cyclic nitrogenated organic molecules in the interstellar medium or circumstellar disks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call