Abstract

This paper investigates quasi-periodic vibration-based energy harvesting in a delayed nonlinear MEMS device consisting of a delayed Mathieu–van der Pol–Duffing type oscillator coupled to a delayed piezoelectric coupling mechanism. We use the multiple scales method to approximate the quasi-periodic response and the related power output near the principal parametric resonance. The effect of time delay on the energy harvesting performance is studied. It is shown that for appropriate combination of time delay parameters, there exists an optimum range of excitation frequency beyond the resonance where quasi-periodic vibration-based energy harvesting is maximum. Numerical simulations are performed to confirm the analytical predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call