Abstract

EMS maglev train uses the active control system to maintain the levitation stability, time delay is widespread in control system. However, the existing maglev dynamics studies rarely consider the effect of time delay, so these analysis results cannot directly guide the engineering design. This paper starts from a theoretical analysis of the levitation stability of a single electromagnet levitation system to obtain the theoretical critical value for the time delay. Then the model is gradually extended to a complete vehicle model and a vehicle-girder coupling dynamics model to find the time delay engineering critical values for the complex coupling system. In order to seek ways to reduce the influence of time delay on the dynamic responses, this paper analyzes the influence regularities of the running speed and control parameters on the dynamic response under the effect of time delay. The result shows that the theoretical critical value of the time delay is equal to the ratio of the differential coefficient and proportional coefficient of the PID controller. For a complex maglev system, the engineering critical value is less than the theoretical critical value. Higher running speeds lead to time delay having a more obvious effect on the maglev system’s dynamic responses. Selecting the smaller proportional coefficient and appropriate differential coefficient for the levitation control system can expand the stability region and reduce the influence of time delay on the maglev system. This analysis is helpful and meaningful to the understanding of the EMS vehicle system stability, and helpful to explore the reason of violent coupled vibration in actual engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call