Abstract
A large quantity of recent research into the harvesting of electrical energy from ambient vibration sources has been focused on the improvement of device performance via the deliberate introduction of dynamic nonlinearities. In addition to this, the realisation that most of these kinetic energy sources are stochastic in nature has led to many studies focusing on the response of energy harvesters to random vibrations (often Gaussian white noise). This differs from early studies in which it was assumed that ambient vibration sources were sinusoidal. The aim of the present study is to take current nonlinear energy harvesting solutions and to numerically analyse their effectiveness when two real ambient vibration sources are used: human walking motion and the oscillation of the midspan of a suspension bridge. This study shows that the potential improvements that can be realised through the introduction of nonlinearities into energy harvesters are sensitive to the type of ambient excitation to which they are subjected. Additionally, the need for more research into the development of low-frequency energy harvesters is emphasised.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.