Abstract

Energy harvesting has lately been of particular attention to researchers. In addition, cognitive radio networks (CRNs) are recognized as an attainable measure for the problem of radio spectrum shortage in next generation radio access. A combination of these two technologies, which forms energy harvesting CRNs (EHCRNs), allows wireless communication terminals to prolong their operation time in limited spectrum scenarios. Nonetheless, that CRNs create opportunities for secondary users to access primary users’ spectrum induces vulnerability of message security. So far, security capability analysis of EHCRNs has been limited to Rayleigh fading whilst Nakagami-m fading is more common than Rayleigh fading and better reflects distinct fading severity degrees in practical scenarios. Accordingly, this paper firstly offers the precise security capability analysis of EHCRNs under interference power constraint, Nakagami-m fading, maximum transmit power constraint, and primary interference. Then, the offered analysis is ratified by computer simulations. Ultimately, multiple results reveal that the security capability is considerably improved with smaller primary interference and lower required security threshold. Moreover, the security capability is significantly impacted by channel severity and is optimized with appropriate selection of time percentage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call