Abstract

The concept of an “energy-harvesting bio-electro-dehalogenation” process is demonstrated, where exoelectrogenic bacteria in an anodic chamber of a microbial fuel cell (MFC) are used to capture and exploit the electrical energy stored in the biodegradable substrate (acetate). The acetate was derived from full electrocatalytic dehalogenation of non-biodegradable halogenated organic compounds (haloacetic acids) in the cathodic chamber. Cobalt(II) meso-tetraphenylporphyrin serves the role as electrocatalyst in the MFC. Cyclic voltammetric analysis shows that full dehalogenation requires a cathodic potential of −1.1 V vs. Ag/AgCl which can be augmented by stacked MFCs powered by the dehalogenated products. Cyclic voltammetric analysis and ion chromatography measurement confirm that electrogenerated cobalt(I) meso-tetraphenylporphyrin is catalyzing the reduction of tri-, di-, and monochloroacetic acids in a sequential dehalogenation processes. The energy harvesting concept is also applicable to other bio-electrochemical processes for treatment of bio-refractory pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.