Abstract

Energy recovery from induced mechanical vibration in vehicle suspension based on piezoelectric harvesting and electromagnetic harvesting has been recently investigated by researchers. Piezoelectric vibration energy harvesting is a new technology that has been investigated for automotive applications due to the amount of wasted vibration from suspension systems. In this study, comprehensive simulations were conducted in order to investigate piezoelectric crystal application to vehicle suspension systems for the potential of harvested power quantification. For this purpose, a linear finite element of a piezoelectric disk was developed and integrated in the spring shock absorber assembling of a 7-DOF full car dynamic model. Equations of motion of these dynamic systems in the time domain were solved in the MATLAB® environment, where the road irregularities are introduced in the model, considering the Roll-pitch-bounce input mode. The RMS electric power responses for BaTiO3, PbTiO3, PbZrTiO3, PZT-5A and PZT-5H piezoelectric crystals were experimented and obtained in the context of energy harvesting. The energy density achieved in this study compared with the experimental results from the literature indicates the potential of the recovered power from the wasted vibration from suspension systems that could be used on embedded electronic devices

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call