Abstract

In the quest for innovative energy solutions suitable for mobile, stationary and digital applications, ferroelectric topological insulators (FETIs)1 emerge as promising candidates. These materials combine topologically protected states with spontaneous and switchable polarization. This study reveals emergent phenomena in FETI-electrolytes through experiments and simulations, specifically in the A3-2xBaxClO family (where A = Li, Na or K, and x = 0 or 0.005). Here, it is shown that surface oscillations of the potential (V), temperature, and mass may synchronize with the bulk's oscillations, and be harnessed and stored in the form of electrical energy either in a sole FETI or in a battery-type cell presenting a panoply of applications from wireless batteries to transistors, memories, sensors, and selective catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.