Abstract
The amount of energy derived from fat in foods is a requirement of U.S. nutrition labeling legislation and a significant factor in diet development by health professionals. Near-infrared (NIR) spectroscopy has been used to predict total utilizable energy in cereal foods for nutrition labeling purposes, and in the current study, was investigated as a method for evaluation of the amount of energy derived from fat. Using NIR reflectance spectra (1104-2494 nm) of ground cereal samples and reference values obtained by calorimetry and by calculation, modified PLS regression models were developed for the prediction of percent energy from fat and energy from fat/g. The models were able to predict the percent of utilizable energy derived from fat with SECV and R(2) of 1.86-1.89% of kcal (n = 51, range 0-43.0) and 0.98, respectively, and SEP and r(2) of 1.74% of kcal (n = 55, range 0-38.0) and 0.98, respectively, when used to predict independent validation samples. Results indicate that NIR spectroscopy provides useful methods for predicting the energy derived from fat in food products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.