Abstract

This paper first presents a comprehensive model of the gas system with detailed formulations on pipelines, short pipes, resistors, valves, compressors, and compressor stations. Furthermore, an optimal energy flow model is proposed for integrated power-gas generation and transmission systems. Specifically, on the generation side, gas-fired units couple the two energy systems as the power generation and gas sink; on the transmission side, gas compressor stations link the two energy systems as the power demand and gas transportation. However, gas flow equations are nonlinear and gas flow directions also need to be optimized. Logical programming and tailored piecewise linearization techniques are performed, leading to a mixed-integer linear program (MILP). Only a logarithmic number of binary variables are introduced to represent the nonlinear quadratic function, and thus, the MILP model can be solved very efficiently. Numerical results on four power-gas test systems demonstrate the effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.