Abstract

This study presents a novel method for planning the expansion of transmission lines and energy storage systems while considering the interconnectedness of electricity and gas networks. We developed a two-level stochastic planning model that addresses both the expansion of transmission and battery systems in the electrical grid and the behavior of the gas network. This research explores the challenges and effects of integrating high levels of renewable energy sources while ensuring security within both networks. Our model uses a stochastic mixed-integer non-linear programming approach. To solve this complex model, we applied the Human Evolutionary Model (HEM). We tested our approach on two case studies: a simple 6-node network and the more complex IEEE RTS 24-bus network for the electricity grid, combined with 5-node and 10-node gas networks, respectively. The results demonstrate the effectiveness of our model, particularly in scenarios where connections in the power and gas networks are disrupted, preventing load shedding even when integrated network connections are cut.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.