Abstract
The present study focuses on the energy, exergy, exergo-economic, and exergo-environmental analyses of the solar-assisted multi-generation system. The multi-generation system consists of parabolic trough solar collector, regenerative power plant, double-effect absorption chiller system, proton exchange membrane electrolyzer, and multi-stage flash desalination plant. In the regenerative power plant, liquid petroleum gas (LPG) based boiler is implemented. The propane (C3H8) is used as the fuel in the boiler combustion chamber. The thermal and exergetic efficiencies of the power cycle are observed to be 41.08% and 23.26%, respectively. The electrical power of 1.384 MW is produced by the low-pressure turbine. Whereas, the thermal COP and exergetic COP are observed and maintained in the range of 1.28 to 0.22, respectively. The liquid hydrogen is produced by the PEM electrolyzer with the thermal and exergetic efficiencies of 60.83% and 64.65%, respectively. Furthermore, the exergo-economics and exergo-environmental analyses have also been conducted and all the parameters have been analyzed and concluded through graphs and tables.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have