Abstract

We present mesoscale equations of motion that lead to a thermodynamically accurate description of the energy exchange between mesoparticles and their internal degrees of freedom. In our approach, energy exchange is done through particle coordinates, rather than momenta, resulting in Galilean invariant equations of motion. The total linear momentum and total energy (including the internal energy of the mesoparticles) are conserved, and no coupling occurs when a mesoparticle is in free flight. We test our method for shock wave propagation in a crystalline polymer, poly(vinylidene fluoride); the mesodynamics results agree very well with all-atom molecular dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.