Abstract

Abstract Development and application of the open-source GPU-based fluid-thermal simulation code, NekRS, are described. Time advancement is based on an efficient kth-order accurate timesplit formulation coupled with scalable iterative solvers. Spatial discretization is based on the high-order spectral element method (SEM), which affords the use of fast, low-memory, matrix-free operator evaluation. Recent developments include support for nonconforming meshes using overset grids and for GPU-based Lagrangian particle tracking. Results of large-eddy simulations of atmospheric boundary layers for wind-energy applications as well as extensive nuclear energy applications are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.