Abstract
Simultaneous wireless information and power transfer (SWIPT) is recently emerging as one of the vital solutions to prolong the lifetime of energy constrained wireless sensor nodes. However, current works on SWIPT considered only the immediate past-hop node's RF signal as a source of energy harvesting in multi-hop Internet of things (IoT) networks. In case of weak radio frequency (RF) signal, the amount of harvested energy does not support for continuous communication. Hence, in this paper a new energy harvesting mechanism is proposed which considers multiple sources (MS) such as (1) sink broadcasting energy, (2) co-channel interference, (3) neighbor nodes' RF signal, and (4) immediate past-hop node's RF signal for energy harvesting. Towards such prospect, a new SWIPT architecture is proposed called hybrid SWIPT (H-SWIPT) by integrating time switching (TS) and power splitting (PS) architectures. Furthermore, an efficient route selection mechanism is introduced to minimize the total energy consumption of the path based on an energy cost metric. To validate the proposed mechanism, simulation experiments are conducted and obtained the superiority of H-SWIPT compared with existing methods in terms of average harvested energy. Further, the effectiveness of proposed method performance is investigated through energy cost at different node density and barrier rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.