Abstract

The coronavirus disease (COVID-19) pandemic has had widespread global effects. The advent of novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, along with the spread of diverse airborne viruses across different geographical locations, has caused reflective apprehension on a global scale. This resurgence emphasises the critical importance of carefully constructed structures installed with efficient ventilation systems, including both natural and mechanical ventilation techniques, as well as mixed-mode ventilation approaches in buildings. Building engineering and architectural designs must go beyond traditional considerations of economics and structural durability in order to protect public health and well-being. To attain a high quality of life, it is necessary to prioritise sustainability, energy efficiency, and the provision of safe, high-quality indoor environments. Empirical scientific investigations underscore the pivotal role played by conducive indoor environments in averting the transmission of viral diseases such as COVID-19 and mitigating challenges associated with sick building syndrome, primarily stemming from suboptimal indoor air quality. This work provides a summary and a SWOT (strength, weakness, opportunities, and threat) analysis of strategies designed for engineers, architects, and other experts in the field to implement. These strategies are intended for integration into new constructions and the retrofitting of extant structures. Their overarching objective is the minimisation of viral transmission within indoor spaces, accomplished in an energy-efficient manner consonant with sustainable development objectives. The significance of these strategies lies in their ability to impact changes to national and international building codes and regulations, strengthening infrastructures against probable airborne viral threats. Encompassing both object-centric and subject-centric approaches, these strategies collectively furnish a holistic framework for mitigating the dissemination of pathogens, exemplified by the SARS-CoV-2 virus and similar airborne viruses, across diverse typologies of buildings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call