Abstract

The unpredictable noise in received signal strength indicator (RSSI) measurements in indoor environments practically causes very high estimation errors in target localization. Dealing with high noise in RSSI measurements and ensuring high target-localization accuracy with RSSI-based localization systems is a very popular research trend nowadays. This paper proposed two range-free target-localization schemes in wireless sensor networks (WSN) for an indoor setup: first with a plain support vector regression (SVR)-based model and second with the fusion of SVR and kalman filter (KF). The fusion-based model is named as the SVR+KF algorithm. The proposed localization solutions do not require computing distances using field measurements; rather, they need only three RSSI measurements to locate the mobile target. This paper also discussed the energy consumption associated with traditional Trilateration and the proposed SVR-based target-localization approaches. The impact of four kernel functions, namely, linear, sigmoid, RBF, and polynomial were evaluated with the proposed SVR-based schemes on the target-localization accuracy. The simulation results showed that the proposed schemes with linear and polynomial kernel functions were highly superior to trilateration-based schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.