Abstract
The indoor object tracking by utilizing received signal strength indicator (RSSI) measurements with the help of wireless sensor network (WSN) is an interesting and important topic in the domain of location-based applications. Without the knowledge of location, the measurements obtained with WSN are of no use. The trilateration is a widely used technique to get location updates of target based on RSSI measurements from WSN. However, it suffers with high location estimation errors arising due to random variations in RSSI measurements. This paper presents a range-free radial basis function neural network (RBFN) and Kalman filtering- (KF-) based algorithm named RBFN+KF. The performance of the RBFN+KF algorithm is evaluated using simulated RSSIs and is compared against trilateration, multilayer perceptron (MLP), and RBFN-based estimations. The simulation results reveal that the proposed RBFN+KF algorithm shows very low location estimation errors compared to the rest of the three approaches. Additionally, it is also seen that RBFN-based approach is more energy efficient than trilateration and MLP-based localization approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Distributed Sensor Networks
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.