Abstract

Small cells are a promising technique to improve the capacity and throughput of future wireless networks. However, user association and power allocation in heterogeneous networks is complicated by the dense deployment of small cells, resulting in non-convex and combinatorial problems. Conventionally, machine learning techniques are applied to the joint optimization problem, which has different action spaces. Gauging the continuous spaces to discrete spaces results in the loss of granularity due to discretization (e.g. potential power values in power allocation). Due to its hybrid action space, it is sub-optimal to solve joint user association (discrete spaces) and power allocation (continuous spaces) problems by applying traditional machine learning approaches. This work proposes a Multi-Agent Parameterized Deep Reinforcement Learning (MA-PDRL) approach to address the joint user association and power allocation problem efficiently. According to simulation results, the proposed multi-agent PDRL performs better in energy efficiency and QoS satisfaction than WMMSE, game theory, Q-learning, and DRL techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.