Abstract

Ultra-low power operation in power-limited portable devices (e.g. cell phone and smartcard) is paramount. Existing conventional CMOS consume high energy. The adiabatic logic technique has the potential of rendering energy efficient operation. In this paper, a multi-phase quasi-adiabatic implementation of 16-bit Cyclic Redundancy Check (CRC) is proposed, compliant with the ISO/IEC-14443 standard for contactless smart cards. In terms of a number of CRC bits, the design is scalable and all generator polynomials and initial load values can be accommodated. The CRC design is used as a vehicle to evaluate a range of adiabatic logic styles and power-clock strategies. The effects of voltage scaling and variations in Process-Voltage-Temperature (PVT) are also investigated providing an insight into the robustness of adiabatic logic styles. PFAL and IECRL designs using a 4-phase power-clock are shown to be both the most energy-efficient and robust designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.