Abstract

The performance of Wireless Sensor Networks (WSNs), a subset of Wireless Ad-hoc Networks, is significantly influenced by the application, lifetime, storage capacity, processing power, changes in topology, communication medium, and bandwidth. These restrictions call for a strong data transport control in WSNs that takes into account quality of service, energy efficiency, and congestion management. Wireless networks face a significant difficulty with congestion which impacts on the loss rate, channel quality, link utilization, the number of retransmissions, traffic flow, network lifetime, latency, energy, and throughput are all negatively impacted by congestion in WSNs. Since the routing problem has been shown to be NP-hard and it has been realized that a heuristic based method delivers better performance than their traditional counterparts, routing is one of the most popular methods for reducing the energy consumption of nodes and increasing throughput in WSNs. This research provides a Rate Aware Congestion Control (RACC), an effective congestion avoidance method that enhances network performance by applying Modified Harris Hawks Optimization (MHHO). Nodes are initially clustered using the DBSCAN clustering algorithm. When compared to existing approaches, the simulation outcomes of the developed technique indicate superior service, low delay, high energy, packet delivery ratio and increased living nodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call