Abstract
<p>The wireless sensor network (WSN) is a vital component of infrastructure that is seeing tremendous demand and quick expansion in a variety of industries, including forestry, airports, healthcare, and the military. Increasing network lifetime and reducing power consumption (PC) are now major goals in WSN research. This research proposes a unique energy-efficient cross-layer WSN design that aims to maximize network lifetime while maintaining quality of service (QoS) criteria to address these challenges. The research initially utilizes the fuzzy k-medoids (FKMeds) clustering technique to group sensor nodes (SN) to improve resilience, scalability, and minimize network traffic. Following that, the hybrid improved grey wolf and ant colony (HIGWAC) optimization approach is applied to choose cluster heads (CH), minimizing distances, reducing latency, and optimizing energy stability. Finally, data is transmitted through the shortest pathways using the adaptive ranking-based energy-efficient opportunistic routing (ARanEOR) protocol, which ensures effective and energy-conserving routing in WSN while dynamically lowering network overhead. Compared to existing approaches, the proposed method in this study outperforms them in terms of energy efficiency, latency, and network longevity.</p>
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Reconfigurable and Embedded Systems (IJRES)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.